direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C23.36D4, C24.170D4, D4⋊5(C22×C4), C4.6(C23×C4), Q8⋊5(C22×C4), C4⋊C4.342C23, (C2×C4).176C24, (C2×C8).391C23, (C22×C4).780D4, C4.141(C22×D4), C23.639(C2×D4), D4⋊C4⋊84C22, Q8⋊C4⋊87C22, (C2×D4).360C23, (C2×Q8).333C23, (C2×M4(2))⋊69C22, (C22×M4(2))⋊19C2, (C23×C4).514C22, (C22×C8).424C22, (C22×C4).900C23, C22.126(C22×D4), C22.105(C8⋊C22), C23.131(C22⋊C4), (C22×D4).553C22, C22.94(C8.C22), (C22×Q8).457C22, C4○D4⋊13(C2×C4), (C2×C4○D4)⋊19C4, (C2×D4)⋊48(C2×C4), (C2×Q8)⋊39(C2×C4), C2.2(C2×C8⋊C22), (C22×C4⋊C4)⋊32C2, C4.98(C2×C22⋊C4), (C2×D4⋊C4)⋊49C2, (C2×C4⋊C4)⋊114C22, C2.2(C2×C8.C22), (C2×Q8⋊C4)⋊50C2, (C2×C4).1406(C2×D4), (C22×C4).324(C2×C4), (C2×C4).461(C22×C4), (C22×C4○D4).19C2, C2.38(C22×C22⋊C4), C22.21(C2×C22⋊C4), (C2×C4).158(C22⋊C4), (C2×C4○D4).273C22, SmallGroup(128,1627)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 716 in 408 conjugacy classes, 180 normal (20 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C4 [×2], C4 [×6], C4 [×8], C22, C22 [×10], C22 [×28], C8 [×4], C2×C4 [×2], C2×C4 [×26], C2×C4 [×38], D4 [×4], D4 [×22], Q8 [×4], Q8 [×6], C23, C23 [×6], C23 [×14], C4⋊C4 [×4], C4⋊C4 [×6], C2×C8 [×4], C2×C8 [×4], M4(2) [×8], C22×C4 [×2], C22×C4 [×12], C22×C4 [×23], C2×D4 [×6], C2×D4 [×15], C2×Q8 [×6], C2×Q8 [×3], C4○D4 [×16], C4○D4 [×24], C24, C24, D4⋊C4 [×8], Q8⋊C4 [×8], C2×C4⋊C4 [×6], C2×C4⋊C4 [×3], C22×C8 [×2], C2×M4(2) [×4], C2×M4(2) [×4], C23×C4, C23×C4 [×2], C22×D4, C22×D4, C22×Q8, C2×C4○D4 [×12], C2×C4○D4 [×6], C2×D4⋊C4 [×2], C2×Q8⋊C4 [×2], C23.36D4 [×8], C22×C4⋊C4, C22×M4(2), C22×C4○D4, C2×C23.36D4
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×8], C23 [×15], C22⋊C4 [×16], C22×C4 [×14], C2×D4 [×12], C24, C2×C22⋊C4 [×12], C8⋊C22 [×2], C8.C22 [×2], C23×C4, C22×D4 [×2], C23.36D4 [×4], C22×C22⋊C4, C2×C8⋊C22, C2×C8.C22, C2×C23.36D4
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=bd=db, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=cde3 >
(1 39)(2 40)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 63)(10 64)(11 57)(12 58)(13 59)(14 60)(15 61)(16 62)(17 46)(18 47)(19 48)(20 41)(21 42)(22 43)(23 44)(24 45)(25 56)(26 49)(27 50)(28 51)(29 52)(30 53)(31 54)(32 55)
(1 20)(2 17)(3 22)(4 19)(5 24)(6 21)(7 18)(8 23)(9 53)(10 50)(11 55)(12 52)(13 49)(14 54)(15 51)(16 56)(25 62)(26 59)(27 64)(28 61)(29 58)(30 63)(31 60)(32 57)(33 43)(34 48)(35 45)(36 42)(37 47)(38 44)(39 41)(40 46)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 25)(7 26)(8 27)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 41)(16 42)(17 58)(18 59)(19 60)(20 61)(21 62)(22 63)(23 64)(24 57)(33 53)(34 54)(35 55)(36 56)(37 49)(38 50)(39 51)(40 52)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 27 28 8)(2 7 29 26)(3 25 30 6)(4 5 31 32)(9 42 43 16)(10 15 44 41)(11 48 45 14)(12 13 46 47)(17 18 58 59)(19 24 60 57)(20 64 61 23)(21 22 62 63)(33 56 53 36)(34 35 54 55)(37 52 49 40)(38 39 50 51)
G:=sub<Sym(64)| (1,39)(2,40)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,63)(10,64)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(25,56)(26,49)(27,50)(28,51)(29,52)(30,53)(31,54)(32,55), (1,20)(2,17)(3,22)(4,19)(5,24)(6,21)(7,18)(8,23)(9,53)(10,50)(11,55)(12,52)(13,49)(14,54)(15,51)(16,56)(25,62)(26,59)(27,64)(28,61)(29,58)(30,63)(31,60)(32,57)(33,43)(34,48)(35,45)(36,42)(37,47)(38,44)(39,41)(40,46), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,57)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,27,28,8)(2,7,29,26)(3,25,30,6)(4,5,31,32)(9,42,43,16)(10,15,44,41)(11,48,45,14)(12,13,46,47)(17,18,58,59)(19,24,60,57)(20,64,61,23)(21,22,62,63)(33,56,53,36)(34,35,54,55)(37,52,49,40)(38,39,50,51)>;
G:=Group( (1,39)(2,40)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,63)(10,64)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(25,56)(26,49)(27,50)(28,51)(29,52)(30,53)(31,54)(32,55), (1,20)(2,17)(3,22)(4,19)(5,24)(6,21)(7,18)(8,23)(9,53)(10,50)(11,55)(12,52)(13,49)(14,54)(15,51)(16,56)(25,62)(26,59)(27,64)(28,61)(29,58)(30,63)(31,60)(32,57)(33,43)(34,48)(35,45)(36,42)(37,47)(38,44)(39,41)(40,46), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,57)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,27,28,8)(2,7,29,26)(3,25,30,6)(4,5,31,32)(9,42,43,16)(10,15,44,41)(11,48,45,14)(12,13,46,47)(17,18,58,59)(19,24,60,57)(20,64,61,23)(21,22,62,63)(33,56,53,36)(34,35,54,55)(37,52,49,40)(38,39,50,51) );
G=PermutationGroup([(1,39),(2,40),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,63),(10,64),(11,57),(12,58),(13,59),(14,60),(15,61),(16,62),(17,46),(18,47),(19,48),(20,41),(21,42),(22,43),(23,44),(24,45),(25,56),(26,49),(27,50),(28,51),(29,52),(30,53),(31,54),(32,55)], [(1,20),(2,17),(3,22),(4,19),(5,24),(6,21),(7,18),(8,23),(9,53),(10,50),(11,55),(12,52),(13,49),(14,54),(15,51),(16,56),(25,62),(26,59),(27,64),(28,61),(29,58),(30,63),(31,60),(32,57),(33,43),(34,48),(35,45),(36,42),(37,47),(38,44),(39,41),(40,46)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,25),(7,26),(8,27),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,41),(16,42),(17,58),(18,59),(19,60),(20,61),(21,62),(22,63),(23,64),(24,57),(33,53),(34,54),(35,55),(36,56),(37,49),(38,50),(39,51),(40,52)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,27,28,8),(2,7,29,26),(3,25,30,6),(4,5,31,32),(9,42,43,16),(10,15,44,41),(11,48,45,14),(12,13,46,47),(17,18,58,59),(19,24,60,57),(20,64,61,23),(21,22,62,63),(33,56,53,36),(34,35,54,55),(37,52,49,40),(38,39,50,51)])
Matrix representation ►G ⊆ GL8(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 15 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 16 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
8 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 |
0 | 0 | 0 | 0 | 15 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 4 | 4 | 13 | 13 |
0 | 0 | 0 | 0 | 15 | 0 | 2 | 0 |
8 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 |
0 | 0 | 0 | 0 | 15 | 13 | 15 | 13 |
0 | 0 | 0 | 0 | 4 | 4 | 13 | 13 |
0 | 0 | 0 | 0 | 15 | 13 | 2 | 4 |
G:=sub<GL(8,GF(17))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,16,0,0,0,0,0,0,2,16,0,0,0,0,16,1,0,0,0,0,0,0,15,1,0,0],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[8,6,0,0,0,0,0,0,15,9,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,15,4,15,0,0,0,0,4,0,4,0,0,0,0,0,4,15,13,2,0,0,0,0,4,0,13,0],[8,7,0,0,0,0,0,0,15,9,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,15,4,15,0,0,0,0,4,13,4,13,0,0,0,0,4,15,13,2,0,0,0,0,4,13,13,4] >;
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | ··· | 4H | 4I | ··· | 4T | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | C8⋊C22 | C8.C22 |
kernel | C2×C23.36D4 | C2×D4⋊C4 | C2×Q8⋊C4 | C23.36D4 | C22×C4⋊C4 | C22×M4(2) | C22×C4○D4 | C2×C4○D4 | C22×C4 | C24 | C22 | C22 |
# reps | 1 | 2 | 2 | 8 | 1 | 1 | 1 | 16 | 7 | 1 | 2 | 2 |
In GAP, Magma, Sage, TeX
C_2\times C_2^3._{36}D_4
% in TeX
G:=Group("C2xC2^3.36D4");
// GroupNames label
G:=SmallGroup(128,1627);
// by ID
G=gap.SmallGroup(128,1627);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,352,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=b*d=d*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^3>;
// generators/relations